Lipschitz fats \& $W^{1, \infty}$
Theorem 4 (Characterization of $W^{1, \infty}$)
Let Ω be open and bid, $w / \partial \Omega$ of class C^{\prime}. Then $u: \Omega \rightarrow \mathbb{R}$ is Lipschitz continuous if and only if $u \in W^{1, \infty}(\Omega)$.
Proof
Let u be arbitrary and consider the extension $E_{u}=\bar{u}$, then (from Tum 1, 65.4) $E_{u}=\bar{u}$ are. in $\Omega\left\{E_{u}\right.$ has compact support within \mathbb{R}^{n}
Now assume that $u \in W^{1,0 \infty}(\Omega) \Rightarrow \bar{u} \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$.
Then $\bar{u}^{\varepsilon}:=\eta_{\varepsilon} * \bar{u}$, where η_{ε} is the standard mollifier, is smooth and satisfies

$$
\left\{\begin{array}{l}
\bar{u}^{\varepsilon} \longrightarrow \bar{U} \text { uniformly as } \varepsilon \rightarrow 0 \\
\left\|D \bar{u}^{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|D \bar{u}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
\end{array}\right.
$$

Recall
i $M \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
q(x)=\left\{\begin{array}{lll}
C \exp \left(\frac{1}{|x|^{2}-1}\right) & \text { if }|x| \leq 1 \\
0 & \text { if }|x| \geq 1
\end{array}\right.
$$

where $C>0$ st. $\int_{\mathbb{R}^{n}} \eta d x=1$.
ii) For each $\varepsilon>0$, set $\eta_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right)$, we call η_{ε} the standard mollifier. The fats η_{ε} are $C^{\infty} \quad \xi$ satisfy

$$
\int_{\mathbb{R}^{n}} \eta_{\varepsilon} d x=1, s p+\left(x_{\varepsilon}\right) \subset B(0, \varepsilon)
$$

Let $x, y \in \mathbb{R}^{n}$ be arbitrary, sit. $x \neq y$) then we have

$$
\begin{aligned}
\bar{u}^{\varepsilon}(x)-\bar{u}^{\varepsilon}(y) & =\int_{0}^{1} \frac{d}{d t} \bar{u}(t x+(1-t) y) d t \\
& =\int_{0}^{1} D \bar{u}^{\varepsilon}(t x+(1-t) y) d t \cdot(x-y)
\end{aligned}
$$

which implies

$$
\left|\bar{u}^{\varepsilon}(x)-\bar{u}^{\varepsilon}(y)\right| \leq\left\|D \bar{u}^{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}|x-y| \leq\|D \bar{u}\|_{L^{2}\left(\mathbb{R}^{n}\right)}|x-y| .
$$

Let $\varepsilon \rightarrow 0$ then

$$
|\bar{u}(x)-\bar{u}(y)| \leq\|D \bar{u}\|_{L^{\infty}\left(\tilde{R}^{n}\right)}|x-y|
$$

for all $x, y \in \mathbb{R}^{n}$. Restrict x, y to $\Omega \&$ we have $u: \Omega \longrightarrow \mathbb{R}$ is Lipschitz continuous. $\sqrt{ } /$

Assume $u: \Omega \longrightarrow \mathbb{R}$ is Lipschitz continuous and therefore

$$
\left\|D_{i}^{-h} u\right\|_{L^{\infty}(\Omega)} \leq \operatorname{Lip}_{i p}(\Omega),
$$

for each fixed $i=1, \ldots, n$, and thus there $e \times i s+5$ a fut $v_{i} \in L^{\infty}(\Omega)$ and a subseq. $h_{k} \rightarrow 0$ st.

$$
D_{i}^{-h_{k}} u \longrightarrow v_{i} \quad \text { weakly in } L_{10 c}^{2}(\Omega) \text {. }
$$

Let $\phi \in C_{c}^{\infty}(\Omega)$ and consequently

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u \phi_{x} d x & =\lim _{\rightarrow \rightarrow 0} \int_{\mathbb{R}^{n} u}\left(D_{i}^{b_{k}} \phi\right) d x \\
& =-h_{k_{k} \rightarrow 0} \int_{\mathbb{R}_{\mathbb{R}}\left(D_{i}^{-k_{k}} u\right) \phi d x} \\
& =-\int_{\mathbb{R}^{n}} v_{i} \phi d x
\end{aligned}
$$

which holds for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, and so $v_{i}=u_{x_{i}}$ (for $i=1, \ldots, n$). Since $u_{x_{i}}=v_{i} \in L_{\text {lac }}^{\infty}(\Omega)$ we have $\quad u \in W^{1, \infty}(\Omega)$

Differentiability ace.
Definition (differentiable).
A fut $u: \Omega \rightarrow \mathbb{R}$ is differentiable at $x \in \Omega$ if there exists $a \in \mathbb{R}^{n}$ such that

$$
u(y)=u(x)+a \cdot(y-x)+o(|y-x|) \quad \text { as } \quad y \rightarrow x
$$

ie.

$$
\lim _{y \rightarrow x} \frac{|u(y)-u(x)-a \cdot(y-x)|}{|y-x|}=0 .
$$

If a exists it is unique and we wite $a=D u(x)$, which is called the gradient of u.
Theorem (Differentiability almost everywhere)
Assume $u \in W_{\text {ice }}^{\text {ip }}(\Omega)$ for some $n<p \leq \infty$. Then u is differentiable a.e. in Ω, and its gradient equals it's weak gradient are
Proof
Assume $n<p e \infty$. Note that $W^{1, \infty}(\Omega) \subset W^{1, p}(\Omega)$ and therefore everything that follows holds for $p=\infty$ (but requires different notation). A variant of the pout Morrey's is kosher for
$n<p \leq \infty$, but this variant of Murrey's inequality provides

Ip (somewhat obvious this) only hands
for all $y \in B(x, r)$, \& all $C^{\prime} f+$ cts v and therefore (by approximation) any ven $W^{\prime P}$. (depends only on $p \& n$.
 Lebesque Differentiation Theorem (GE,4) (requires local summability) implies

$$
f_{B(x, r)}|D u(x)-D u(z)|^{p} d z \rightarrow 0 \text { as } r \rightarrow 0 \text {. }
$$

Where D_{u} is the weak derivative of u !
Fix an arbitrary $x \in \Omega$ and define

$$
v(y):=u(y)-u(x)-\operatorname{Du}(x) \cdot(y-x)
$$

then note that $v(x)=0$. Estimate (1) is now

$$
\begin{aligned}
& |u(y)-u(x)-D u(x) \cdot(y-x)| \leq C^{1+x p}\left(S_{B(x, 2 r)} \mid D\left[u(z)-u(x)-D u(x) \cdot(z-x)| |^{p} d z\right)^{1 / p}\right. \\
& =\operatorname{Cr}^{r^{n / P}(}\left(\int_{B(x, z)}\left|D_{u}(z)-D u(x)\right|^{P} d z\right)^{1 / p} \\
& =C r^{1-n / P}\left(C r^{n} f_{B(x, 2 r)}|D u(z)-D u(x)|^{p} d z\right)^{1 / P} \\
& \text { Thanks to }\left(\leq \operatorname{Cr}\left(f_{B(x, 2 r)}|\operatorname{Du}(z)-D u(x)|^{P_{d z}}\right)^{1 / p}\right. \\
& \text { Ubesque Differentititions }=O(r)
\end{aligned}
$$

as $r \rightarrow 0$. Note that as $r \rightarrow 0, y \rightarrow x$ and therefore

$$
|u(y)-u(x)-D u(x) \cdot(y-x)|=0(|y-x|)
$$

a) $y \rightarrow x$ which implies u is differentiable at ae. $x \in \Omega$ and by uniqueness it's gradient equals its weak gradient.

Theorem 6 (Rademacher's Thu)
Let u be locally Lipchitz continuous in Ω. Then u is differentiable almost everywhere in Ω.
Theorems $3,4,5$ "mostly" imply this almost directly.
Notation
\hat{u} is the Fourier transform of $u, \xi \breve{u}$ is the inverse Fourier transform.
Fourier Methods
Theorem (Characterization of H^{k} by Fourier transform) is Hilbert! Let k be a nonnegative integer.
i) a fut $u \in L^{2}\left(\mathbb{R}^{n}\right)$ belongs to $H^{k}\left(\mathbb{R}^{n}\right)$ if and only if $\left(1+|y|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$.
ii) In addition, there exists a $C>0$ st.

$$
\frac{1}{C}\|u\|_{H^{n}\left(\mathbb{R}^{n}\right)} \leq\left\|\left(1+|y|^{k}\right) \hat{U}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{H^{k}\left(\mathbb{R}^{n}\right)}
$$

for each $u \in H^{k}\left(\mathbb{R}^{h}\right)$.
Properties we will need:

1) if $u \in L^{2}\left(\mathbb{R}^{n}\right)$ then $\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|\hat{u}\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\| u u_{L^{2}\left(\mathbb{R}^{n}\right)}$
2) $\widehat{D^{\alpha} u}=(i y)^{\alpha} \hat{u}$
3) $\int_{\mathbb{R}} u \bar{v} d x=\int_{R} \hat{u} \overline{\hat{v}} d y$

Proof
i) Assume first $u \in H^{k}\left(\mathbb{R}^{n}\right)$. Then for each multindex $|\alpha| \leq k$, we have $D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)$. Now if $u \in C^{k}$ has compact opt, we have

$$
D^{\alpha} u=(i y)^{\alpha} \hat{u}
$$

according to The 2 in §4.3.1.

Approximating by smooth functions we deduce $\widehat{D}^{\alpha} u=(i y)^{\alpha} \hat{u}$
for all ${ }^{c} U \in H^{k}\left(\mathbb{R}^{n}\right)$ which implies (in) $)^{\alpha} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$ for each $|\alpha| \leq K$. Note that since $D^{\alpha} U \in L^{2}\left(\pi^{n}\right)$ we have $\left\|D^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|D^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$. Then

$$
\begin{aligned}
& \int\left|D^{k} u\right|^{2} d \bar{x}=\int \sum_{|\alpha|=k}\left|D^{\alpha} u\right|^{2} d x \\
& =\int \sum_{k \mid=u}\left|\widehat{D}^{\hat{\alpha} u}\right|^{2} d y \\
& -\int \sum_{\text {lx|ke }}^{n}\left|(i y)^{\alpha} \hat{\imath}\right|^{2} d y \\
& =\int \sum_{|k|-k}|y|^{2 \alpha}|\hat{u}|^{2} d y \text { picking } \\
& \geq C \int|y|^{2 k}|\hat{u}|^{2} d y=\underset{a}{2} b>=k \vec{l}_{1}
\end{aligned}
$$

Therefore,
Then

$$
\begin{aligned}
& =2^{2}\left(\log \{a, b, b)^{2}\right.
\end{aligned}
$$

$=2^{2}\left(a^{2}+b^{2}\right)$.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\left|+|y|^{k}\right)^{2}|\hat{u}|^{2} d y\right. & \stackrel{k}{\leq} \int_{\mathbb{R}^{n}}\left(1+|y|^{2 k}\right)\left(\left.\hat{u}\right|^{2} d y\right. \\
& \leq C\left(\|\hat{u}\|_{L^{2}}^{2}+C \cdot\left\|D^{k} u\right\|_{L^{2}}^{2}\right) \\
& \leq C\|u\|_{H^{k}}^{2} \\
\Rightarrow\left(\left|+|y|^{k}\right) \hat{u}\right. & \in L^{2} \mathbb{R}^{n}
\end{aligned}
$$

Now assume $\left(1+|y|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right) \quad \xi \quad|\alpha| \leq k$. Then

$$
\begin{aligned}
&\left\|(i y)^{\alpha} \hat{u}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \leq \int_{\mathbb{R}^{n}}|y|^{2 / \alpha}|\hat{u}|^{2} d y \leq C\left\|\left(1+|y|^{k}\right) \hat{u}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) .} \\
& \Rightarrow \quad(i y)^{2} \hat{u} \in L^{2}\left(\mathbb{R}^{n} .\right.
\end{aligned}
$$

Define

$$
u_{\alpha}:=\left[(i y)^{\alpha} \hat{u}\right]^{v}
$$

Then for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(D^{\alpha} \phi\right) \bar{u} d x & =\int_{\mathbb{R}^{n}}\left(\widehat{D^{\alpha}}\right) \overline{\hat{u}} d y \\
& =\int_{\mathbb{R}^{n}}\left(i y^{\alpha}\right)^{\alpha} \hat{\phi} \hat{\hat{u}} d y \\
& =(-1)^{1+1} \int_{\mathbb{R}^{n}} \hat{\phi}(i y)^{\alpha} \hat{u} d y \\
& =(-1)^{1 \alpha} \int_{\mathbb{R}^{n}} \phi \bar{u} d y
\end{aligned}
$$

$\Rightarrow u_{\alpha}=D^{\alpha} U$ in the weak sense and since $u^{\alpha}=(i y)^{\alpha} \hat{u} \in L^{2}\left(\mathbb{R}^{-1}\right)$ this implies $p^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $|\alpha| \leq k$ and we conclude that $u \in H^{k}\left(\mathbb{R}^{n}\right)$.
ii) follows immediately

Definition
Assume $0<s<\infty$ and $u \in L^{2}\left(\mathbb{K}^{n}\right)$. Then $u \in H^{s}\left(\mathbb{R}^{n}\right)$ if $\left(\left|+|y|^{s}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right.$. For unnintegers s we set

$$
\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}:=\underbrace{\left.\left\|\left(1+|y|^{s}\right) \hat{u}\right\|_{L^{2}\left(\pi^{n}\right)} \cdot\right)}_{\text {showed that }}
$$ equivalent norm to $c^{2}\left(\mathbb{R}^{n}\right)$.

