Lipschitz fets
$$\underline{\xi} \ \underline{W}^{1,\infty}$$

Theorem $\underline{\Psi}$ (Character: zation of $W^{1,0}$)
Let \mathcal{R} be open and bdd, W \mathcal{DR} of
class C . Then $W: \mathcal{R} \rightarrow \mathbb{R}$ is Lipschitz continuous
if and only if $W \in W^{1,\infty}(\mathcal{R})$.
Proof
Let U be arbitrary and consider the
extension $\mathcal{E} U = \overline{U}_1$ then (from Thin 1, 95.4)
 $\mathcal{E} U = \overline{U}$ a.e. in $\mathcal{R} \subset \mathcal{L}$ Eu has compact support
Within \mathbb{R}^n
Now assume that $U \in W^{1,\infty}(\mathcal{R}) \Rightarrow \overline{U} \in W^{1,\infty}(\mathbb{R}^n)$.
Then $\overline{U}^{\mathbb{C}}:= \mathcal{M}_{\mathbb{C}} \times \overline{U}$ Where $\mathcal{M}_{\mathbb{C}}$ is the standard mollifier,
is smooth and satisfies
 $\int \overline{U}^{\mathbb{C}} \longrightarrow \overline{U}$ uniformly as $\mathcal{E} \rightarrow \mathcal{O}$
 $\|D\overline{u}^{\mathbb{C}}\|_{\mathcal{O}(\mathbb{R}^n)} = \|D\overline{u}\|_{\mathcal{L}^{\infty}(\mathbb{R}^n)}$
Recall
 $\mathcal{M} \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ is defined by
 $\mathcal{M} := \begin{cases} Cep(\overline{m}^{\mathbb{C}-1}) & \text{if } \|X\| \leq 1 \\ O & \text{if } \|X\| \geq 1 \\ O & \text{if } \|X\| \geq 1 \end{cases}$
where $C > \mathcal{O}$ s.t. $\int_{\mathbb{R}^n} \mathcal{M} dx = 1$.
i) For each $\mathcal{E} = \mathcal{O}$, set $\mathcal{M}_{\mathbb{C}} \otimes := \frac{\mathcal{E}}{\mathcal{M}} \mathcal{M}(\mathbb{R})$, we
call $\mathcal{M}_{\mathbb{C}}$ the standard mollifier. The fels
 $\mathcal{M}_{\mathbb{C}}$ are $\mathbb{C}^{\infty} = \mathbb{C}$ satisfy
 $\int_{\mathbb{C}^n} \mathcal{M}(\mathcal{L}) = \mathcal{B}(\mathcal{O}, \mathcal{E})$.

Let x,y ell^h be whitrary s.t. x#y; then we have

$$\bar{u}^{\epsilon}(x) - \bar{u}^{\epsilon}(y) = \int_{0}^{1} \frac{d}{d+} \overline{u}(tx+(1-t)y)dt$$

 $= \int_{0}^{1} D \, \overline{u}^{\epsilon}(tx+(1-t)y)dt \cdot (x-y)$

which implies $|\overline{u}^{\epsilon}(x) - \overline{u}^{\epsilon}(q)| \leq ||D\overline{u}^{\epsilon}||_{\mathcal{L}^{\infty}(R^{n})}|x - y| \leq ||D\overline{u}||_{\mathcal{L}^{\infty}(R^{n})}|x - y|$. Let $\epsilon \longrightarrow 0$ then $|\overline{u}(x) - \overline{u}(q)| \leq ||D\overline{u}||_{\mathcal{L}^{\infty}(R^{n})}|x - y|$ for all $x, y \in \mathbb{R}^{n}$. Restrict x, y to $SZ \notin$ we have $u: \mathcal{R} \longrightarrow \mathbb{R}$ is Lipschitz continuous. $\sqrt{\sqrt{n}}$

Assume $u: \mathcal{I} \longrightarrow \mathbb{R}$ is Lipschitz continuous and therefore

$$\begin{split} \|\mathcal{D}_{i}^{+}u\|_{\mathcal{L}^{\infty}(\mathcal{R})} &\leq \text{Lip}(\mathcal{R}),\\ \text{for each fixed } i=1,...,n, \text{ and thus there exists}\\ \alpha \quad \text{fct} \quad \forall \in L^{\infty}(\mathcal{R}) \quad \text{and} \quad a \quad \text{subseq.} \quad h_{\mathsf{K}} \xrightarrow{\rightarrow} O\\ \text{s.t.} \end{split}$$

<u>Differentrability a.e.</u> <u>Definition</u> (differentiable). A fct u: R→IR is differentiable at XER if there exists a Rh such that $u(y) = u(x) + \alpha \cdot (y - x) + o(|y - x|) \qquad \text{as} \quad y \to \infty$ i.e. $\lim_{y\to x} \frac{|u(y) - u(x) - \alpha \cdot (y - x)|}{|y - x|} = O.$ It a exists it is unique and we write a=Duby, which is called the gradient of u. Theorem (Differentiability almost everywhere) Assume UE Wive (SC) for some N<P=∞. Then U is differentiable a.e. in R, and it's gradient equals it's weak gradient a.e. Proof Assume N < pero. Note that W'"(R) < W'"(R) and therefore everything that follows holds for p=00 (but requires different notation). A variant of the prot of Morrey's inequality provides $|v(y) - v(x)| = Cr^{1-mp} (S_{B(x,2r)} | Dv(z)|^{p} dz)^{p}$ the variant obvious is a constraint of the variant of for all yEB(x,r), & all C'fets v and therefore (by approximation) any ve W'IP C depends only on p & n. Let UE WING (R). Now for almost every XE R, Lebesque Differentiation Theorem (SE.4) (requires local summability) implies $\int_{\mathcal{B}(x,r)} |\mathcal{D}u(x) - \mathcal{D}u(z)|^{P} dz \rightarrow 0 \qquad \text{as } r \rightarrow 0.$

Where Du is the weak derivative of u!
Fix an arbitrary
$$x \in \mathcal{R}$$
 and define
 $v(y) := u(y) - u(x) - \mathcal{D}u(x) \cdot (y - x)$
then note that $v(x) = 0$. Estimate (f) is now
 $|u(y) - u(x) - \mathcal{D}u(x) \cdot (y - x)| \le Cr^{n} \binom{s_{\mathcal{B}(x,2r)}}{s_{\mathcal{B}(x,2r)}} |\mathcal{D}u(x) - \mathcal{D}u(x) \cdot (z - x)]|^2 dz$
 $= Cr^{1-n} \binom{s_{\mathcal{B}(x,2r)}}{s_{\mathcal{B}(x,2r)}} |\mathcal{D}u(x) - \mathcal{D}u(x)|^2 dz$
 $= Cr^{1-n} \binom{s_{\mathcal{B}(x,2r)}}{s_{\mathcal{B}(x,2r)}} |\mathcal{D}u(x) - \mathcal{D}u(x)|^2 dz$
 $utility = O(r)$
Thanks to $(f \le Cr^{n} f_{\mathcal{B}(x,2r)}) |\mathcal{D}u(x) - \mathcal{D}u(x)|^2 dz)^{n}$
 $utility = O(r)$
 $utility = O(r)$
 $utility - u(x) - \mathcal{D}u(x) \cdot (y - x)| = o(|y - x|)$ as $y \Rightarrow x$
 $u(y) - u(x) - \mathcal{D}u(x) \cdot (y - x)| = o(|y - x|)$ as $y \Rightarrow x$

which implies us differentiable at a.e. XESC and by uniqueness it's gradient equals it's weak gradient.

Theorem 6 (Rademacher's Thm)
Let u be locally Lipschitz continuous in D. Then u
is differentiable almost everywhere in R.
Theorems 3.4.5 "mostly" imply this almost directly.
Notation

$$\hat{U}$$
 is the Fourier transform of a, 4 ŭ is the inverse
Fourier transform.
Fourier Methods
Fourier Methods
Let k be a nonnegative integer.
i) a fat ueL²(Rⁿ) belongs to H^k(Rⁿ) if and only if
 $(1+|y|^{k})\hat{u} \in L^{2}(R^{n})$.
ii) In addition, there exists a C>O s.t.
 $c = [|u||_{H^{M}(R^{n})}$.
For each ueH^k(Rⁿ).
Progesties we will need:
1) if $u \in L^{2}(R^{n})$ then $||u||_{C(R^{n})} = ||\hat{u}||_{C(R^{n})} = ||\hat{u}||_{C(R^{n})}$
if $Arssume$ first $u \in H^{k}(R^{n})$. Then for each multindex
 $|a| \leq k_{j}$ we have $D^{n} u \in L^{2}(R^{n})$. Now if $u \in C^{n}$
has compact spt, we have
 $D^{n} u = (iy)^{n} \hat{u}$
 $according to Tam 2 in § 4.31.$

Appriximating by Smooth functions we deduce

$$D^{*}u(\{iy\})^{k}\hat{U}$$
for all ^c Ue H^k(Rⁿ) which implies $(iy)^{k}\hat{U} \in L^{2}(IR^{n})$ for
each $|d| \in K$. Note that since $D^{*}u \in L^{2}(IR^{n})$ we
have $||D^{*}u||_{L^{2}(IR^{n})} = ||D^{*}u||_{L^{2}(IR^{n})}$ for
 $||U||^{2u}||U||_{L^{2}(IR^{n})} = ||D^{*}u||_{L^{2}(IR^{n})}$
Therefore $||U||^{2u}||U||^{2} \leq C \int ||D^{*}u||^{2} \int ||U||^{2} ||U||_{L^{2}(IR^{n})}$
 $\int_{IR^{n}} (|H|y||^{n})^{2}||U||^{2} dy \leq C \int_{IR^{n}} (|H|y||^{2n})||U||^{2} dy$
 $\leq C (||U|||^{2} + C(||D^{*}u||^{2}))$
 $\int_{IR^{n}} (|H|y||^{n})^{2}||U||^{2} dy \leq C \int_{IR^{n}} ||U||^{2} dy$
 $\leq C (||U|||^{2} + C(||D^{*}u||^{2}))$
 $\leq C ||U|||^{2} dy$
 $\leq C (||U||^{2} + C(||D^{*}u||^{2}))$
 $\leq C ||U||^{2} dy$
 $\leq C (||U||^{2} dy \leq C ||U||^{2} dy = C ||U|||^{2} dy$
 $\leq C (||U||^{2} dy \leq C ||U||^{2} dy = C ||U|||||^{2} dy$
 $\leq C (||U||^{2} dy \leq C ||U||^{2} dy = C ||U|||||^{2} dy = C ||U|||^{2} dy$
 $\Rightarrow (iy)^{k} \hat{U} \in L^{2} (IR^{k}).$
 $D_{a} fine$
 $U_{d} := [U|y|^{k} \hat{U}]^{2}.$

Then for all
$$\beta \in C_{c}^{\infty}(\mathbb{R}^{n})$$

 $S_{\mathbb{R}^{n}}(D^{*}\phi)\overline{u}dx = S_{\mathbb{R}^{n}}(D^{*}\phi)\overline{u}dy$
 $= S_{\mathbb{R}^{n}}(i\psi)^{*}\phi\overline{u}dy$
 $= (-1)^{1d1}S_{\mathbb{R}^{n}}\phi\overline{u}dy$
 $= (-1)^{1d1}S_{\mathbb{R}^{n}}\phi\overline{u}dy$
 $\Rightarrow U_{a} = D^{*}U$ in the weak sense and since
 $u^{*} = (i\psi)^{*}\overline{u}\in L^{2}(\mathbb{R}^{n})$ this implies $D^{*}u\in L^{2}(\mathbb{R}^{n})$ for
all ($x \in k$ and we conclude that $u\in H^{k}(\mathbb{R}^{n})$.
ii) follows immediately

Definition Assume $0 < s < \infty$ and $u \in L^2(IR^n)$. Then $u \in H^s(IR^n)$ if $(|+|y|^s) \hat{u} \in L^2(IR^n)$. For nonintegers s we set $\| u \|_{H^s(IR^n)} := \| (|+|y|^s) \hat{u} \|_{L^2(IR^n)}$. showed that this an equivalent norm to $L^2(IR^n)$.